365 * 364 * 363 * ... * (365 - n + 1),vegna þess að þegar við höfum valið fyrsta daginn getum við ekki notað hann aftur, svo þá eru 364 dagar í pottinum, og svo framvegis þar til öllum n mönnunum hefur verið raðað. Heildarfjöldi leiða til að raða fólkinu á dagana í árinu er hins vegar 365n, því þá er okkur sama um hvort einhverjir dagar eru endurteknir. Fyrir hvern nýjan mann í hópnum eru 365 möguleikar sem eru óháðir röðun hinna og því margfaldast talan með 365 fyrir hvern nýjan í hópnum þannig að niðurstaðan verður 365n eða talan 365 margfölduð með sjálfum sér n sinnum. Við sjáum þannig að fyrir n manna hóp eru líkurnar á því að engir tveir eigi afmæli á sama degi jafnar
p(n) = 365 * 364 * ...* (365-n+1) / 365nog því eru líkurnar á því að einhverjir tveir deili afmælisdegi jafnar 1 - p(n). Þetta fall af n er sýnt á grafinu hér á eftir.

Af grafinu sést að ef það eru fleiri en 22 í hópnum, þá eru meiri en helmings líkur á að einhverjir tveir eigi afmæli á sama degi. Einnig sést að ef 57 eða fleiri manns eru í hópnum eru yfir 99% líkur á að einhverjir hafi fæðst á sama degi. Þessi niðurstaða er kölluð afmælisþversögnin. Nafnið kemur þó ekki af því að þetta sé raunveruleg þversögn, heldur af því að niðurstaðan kemur þó nokkuð á óvart miðað við fjölda mögulegra afmælisdaga. Mynd: