Sendu inn spurningu

Hér getur þú sent okkur nýjar spurningar um vísindaleg efni.

Hafðu spurninguna stutta og hnitmiðaða og sendu aðeins eina í einu. Einlægar og vandaðar spurningar um mikilvæg efni eru líklegastar til að kalla fram vönduð og greið svör. Ekki er víst að tími vinnist til að svara öllum spurningum.

Persónulegar upplýsingar um spyrjendur eru eingöngu notaðar í starfsemi vefsins, til dæmis til að svör verði við hæfi spyrjenda. Spurningum er ekki sinnt ef spyrjandi villir á sér heimildir eða segir ekki nægileg deili á sér.

Spurningum sem eru ekki á verksviði vefsins er eytt.

Að öðru leyti er hægt að spyrja Vísindavefinn um allt milli himins og jarðar!

=

Leit á vefnum

Niðurstöður leitar - 50 svör fundust

Hver er munurinn á falli og vörpun í stærðfræði?

Oftast er ekki gerður neinn greinarmunur á skilgreiningunni á vörpun og falli. Hins vegar er stundum munur á því hvernig orðin eru notuð. Vörpun eða fall, F, er skilgreint sem ákveðin „aðgerð“ sem úthlutar sérhverju staki úr tilteknu mengi, köllum það A, staki í öðru mengi sem kalla má B (sjá dæmi á mynd). Stakið ...

Nánar...

Hvort eru fleiri mínus- eða plústölur í talnakerfi okkar?

Fyrir hverja jákvæða tölu er alltaf hægt að finna eina neikvæða, nefnilega með því að setja mínus fyrir framan hana. Fyrir hverja neikvæða tölu má eins finna eina jákvæða, með því að taka mínusinn burt. Auk þess fær maður aldrei sömu neikvæðu töluna fyrir tvær mismunandi jákvæðar tölur og öfugt. Þannig er hægt að ...

Nánar...

Er hægt að sanna að mengi rauntalna, R, taki enda?

Svarið er nei; fullyrðingin er röng og því ekki von að hægt sé að sanna hana. Rauntölur eru allar þær tölur sem unnt er að skrifa sem óendanlega summu eða til dæmis sem óendanlegt tugabrot. Þar á meðal eru tölur sem hægt er að skrifa sem endanlega summu því að við getum alltaf bætt núllum við slíka summu til a...

Nánar...

Hver var Gaston Julia?

Gaston Maurice Julia (1893 - 1978) var franskur stærðfræðingur sem rannsakaði mengi sem tengjast ítrunum á ákveðnum föllum. Hann fæddist í Alsír, sem var undir yfirráðum Frakka á þessum tíma, og barðist í fyrri heimstyrjöldinni. Hann misst nefið í árás Þjóðverja og allt frá því bar hann leðurpjötlu á andlitinu í s...

Nánar...

Hvernig er hægt að nálgast óendanlega einhvern punkt en ná aldrei til hans? Og hvernig getur eitthvað hreinlega verið óendanlegt?

Í venjulegri rúmfræði er ekki hægt að vera óendanlega nálægt punkti, nema að vera í honum. En það má til dæmis nálgast punkt með því að færast á hverri sekúndu hálfa leiðina til hans. Þá næst aldrei til punktins en með því að taka sér nógan tíma kemst maður hversu nálægt honum sem vera skal. Þetta mætti orða þanni...

Nánar...

Eru ósannar fullyrðingar fleiri en sannar? Er til sönn fullyrðing fyrir hverja ósanna? Er hægt að ljúga meiru heldur en segja satt?

Til sérhverrar fullyrðingar, F, svarar önnur, nefnilega fullyrðingin "Það er ekki satt að F" (eða einfaldlega "ekki-F"), sem er sönn þá og því aðeins að F sé ósönn, það er að segja ef F er sönn, þá er ekki-F ósönn, og ef ekki-F er sönn, þá er F ósönn. Því hljóta sannar fullyrðingar að vera nákvæmlega jafnmargar og...

Nánar...

Er mengi rauntalna hlutmengi í mengi tvinntalna?

Svarið við þessari spurningu er já. Við skulum skoða af hverju. Tvinntala er tala sem skrifa má á forminu $z =x+iy$, þar sem $x$ og $y$ eru rauntölur. Talan $i$ er skilgreind þannig að $i^2 = -1$. Talan $x$ kallast raunhluti og $y$ þverhluti tölunnar $z$. Tvö sértilvik er vert að athuga. Ef $x = 0$ er $z = 0 +...

Nánar...

Getur eitthvað verið eðlilegt án þess að eitthvað annað sé óeðlilegt?

Þessari spurningu er erfitt að svara meðal annars vegna þess að það er ekki fullljóst hvað orðin „eðlilegt“ og „óeðlilegt“ eiga að merkja nákvæmlega. Áður en við veltum því fyrir okkur hvort eitthvað geti verið eðlilegt án þess að eitthvað annað sé óeðlilegt er því við hæfi að íhuga aðeins merkingu orðanna. Í ein...

Nánar...

Hver er fræðilega skýringin á því hvar hringur endar og byrjar?

Til að svara þessari spurningu þurfum við fyrst að vita hvernig hringur er skilgreindur. Í svari Þorsteins Vilhjálmssonar við spurningunni Hvernig skilgreinir maður hring? segir svo:Hringur eða hringferill er mengi þeirra punkta í sléttu eða plani sem eru í tiltekinni fjarlægð frá gefnum punkti. Sá punktur nefnist...

Nánar...

Hvað er ítrun Newtons?

Ítrun Newtons er leið til að finna rót falls með tölulegum reikningum. Með rót falls \(f(x)\), sem er einnig kölluð núllstöð fallsins, er átt við gildi á \(x\) þannig að fallið verður núll. Tölulegar aðferðir eru nauðsynlegar þegar ekki er hægt að finna lausnir beint en þær eru einnig notaðar þegar tölvuforrit eru...

Nánar...
Fleiri niðurstöður Hleð ... Fleiri svör er ekki að finna.
Sendu inn spurningu
eða

Vísindadagatalið

Arabískar tölur

Í bókinni Liber abaci frá 1202 kynnti ítalski stærðfræðingurinn Leónardó Fibonacci arabískar tölur og indó-arabískan sætisrithátt fyrir Evrópumönnum. Áður höfðu Evrópumenn notað rómverskan talnarithátt og reiknað á talnagrindum. Hin nýja talnaritun varð til þess að menn gátu reiknað á blaði, á sandi eða vaxtöflum.